—— 请按键盘 空白键 开始游戏 ——

关于证明的名人名言哲理格言警句语录 - 每日文摘
证明
The most elegant mathematical proofs are those that reveal truth with simplicity.
A mathematical proof is a poem written in the language of logic.
The elegance of a proof is as important as its correctness.
The study of Galois representations is a testament to the beauty of algebraic geometry.
The arithmetic of algebraic varieties is a testament to the power of abstract thought.
The study of Shimura varieties is a testament to the interconnectedness of geometry and number theory.
The study of Galois representations is a testament to the power of algebraic methods.
The Langlands program is a testament to the beauty of mathematical abstraction.
The study of Shimura varieties is a testament to the power of geometric intuition.
The Langlands program is a testament to the interconnectedness of all areas of mathematics.
The study of L-functions is a testament to the power of abstraction in mathematics.
The study of Shimura varieties is a testament to the unity of mathematics.
The Langlands program is a testament to the interconnectedness of mathematical ideas.
The study of automorphic forms is a testament to the power of symmetry in mathematics.
The Langlands program is a testament to the power of abstract thought in mathematics.
The study of L-functions is not just about proving theorems but about understanding patterns.
A mathematical proof is not just a verification but a story that reveals deeper truths.
A proof is a way to convince yourself and others that something is true.
The deepest theorems often have the simplest proofs - if you look at them from the right angle.
Mathematics is not a deductive science—that's a cliché. When you try to prove a theorem, you don't just list the hypotheses and then start to reason. What you do is trial and error, experimentation, guesswork.